On the Use of Feature-Oriented Programming for
Evolving Software Product Lines — A Comparative Study

Gabriel Coutinho Sousa Ferreirat, Felipe Nunes Gaia', Eduardo Figueiredo?and
Marcelo de Almeida Maia

'Federal University of Uberlandia, Brazil
2 Department of Computer Science, Federal University of Minas Gerais, Brazil
{gabriel, felipegaia}@mestrado.ufu.br, figueiredo@dcc.ufmg.br,
marcmaia@facom.ufu.br

Abstract. Feature-oriented programming (FOP) is a programming technique
based on composition mechanisms, called refinements. It is often assumed that
feature-oriented programming is more suitable than other variability
mechanisms for implementing Software Product Lines (SPLs). However, there
is no empirical evidence to support this claim. In fact, recent research work
found out that some composition mechanisms might degenerate the SPL
modularity and stability. However, there is no study investigating these
properties focusing on the FOP composition mechanisms. This paper presents
quantitative and qualitative analysis of how feature modularity and change
propagation behave in the context of two evolving SPLs, namely WebStore and
MobileMedia. Quantitative data have been collected from the SPLs developed
in three different variability mechanisms: FOP refinements, conditional
compilation, and object-oriented design patterns. Our results suggest that FOP
requires few changes in source code and a balanced number of added modules,
providing better support than other techniques for non-intrusive insertions.
Therefore, it adheres closer to the Open-Closed principle. Additionally, FOP
seems to be more effective tackling modularity degeneration, by avoiding
feature tangling and scattering in source code, than conditional compilation and
design patterns. These results are based not only on the variability mechanism
itself, but also on careful SPL design. However, the aforementioned results are
weaker when the design needs to cope with crosscutting and fine-grained
features.

Keywords: Software product lines, Feature-oriented programming, Variability
management, Design patterns, Conditional compilation.

1 Introduction

Software Product Lines (SPL§17] are known to enabléarge scalereuseacross
applications that shame similardomain. Tle potential benefits of SPlaaeachieved
through a software architecture designedhcreasereuseof features in several SPL
products. There are common features found on all products of the product line
(known as mandatory featurespnd variable features that allow distinguishing
between pducts in a product line (generally represented by optional onatiies

features).Variable features define points of variaion andtheir role isto permit the
instantiation of differenproducs by enabling or disablingpecificSPL functionality.

As in any software life cycle, changéa SPLs are expected and must be
accommodatei30]. When it comes to SR these changdsaveeven morampact
sincechangsto attend new stakeholdeequestg17], may affect several products
an ideal scenaridghe introduction of new features on &PL should be conductdxy
inserting components that encapsulate newenhancedeatures[11], minimizing
ripple effeds of changes

Variability management is a key factor to be considesdwn evolving SPLs.
Severalmechanismswhetherannotativeor compositional 34], support variability
managementExamples ofvariability mechanisms ar&OP refinements1p, 14],
conditional compilation 4, 5], and objecbriented design pattern27q. To be
considered effectivedhese mechanismsust guarantee th®PL architecture stability
and, at the same time, facilitate future changesrder to ensure these requirements
the variability mechanissmshould minimize changesand should not degenerate
modularity In other wordsyariability mechanism should supporhorintrusive and
self-containedchanges thaflavor insertionsanddo not require deep modifications in
existent componentsThese requirements are related to @wen-Closed principle
[42], whi ch st at es shduld ®e opensfar extension, ebut closed for
mo d i f i.dhastprin@ptetan be achieved with mechanisms that add new artifacts
to extendthe systemfunctionality, but minimize the amount ofmodifications in
current code.

Our work targets to find out howariability mechanisms behavia terms of
modularity and changeropagatioron specific SPL changgcenariosin this context,
this paperpresentswo case stuigs that evaluatescomparatively three mechanisms
for implementing variability on evolving software product lines: conditional
compilation (CC), objectoriented design patterns (DP) and featoriented
programming (FOP). This investigation extends our preliminary work22] and
focuses on the evolution oftwo software product line, called WebStoreand
MobileMedia (Section 3) We choose these SPLs because they were available to us
andhave beemsed in previous studies with similaarpose 16, 24]. Altogether we
considered five versions of WebSt@PLand seven versions of MobileMedséL.

In this study, we analyzed and comparethe implementationof variability
mechanisms to evolwsvo SPLs, usinga pureFOPlanguage (Jak)1(] andother two
OO-based programming techniques This work evaluated the compositan
mechanisms available in FOPBy using the other two variability techniques as
baseline.The SPL implementation assessmeavds based on modularignd change
propagationmetricsrecurrentlyused to quantff separation of concerremnd change
impacts[16, 18, 26, 47, 52]. Moreover our study comtbutes to build up a body of
knowledge that allows the comparison of AHEAD and otR€@P or nonFOP
approaches

This paperextends the previous SBLPaperwith two major contributions, as
follows.

1 A new case study using the MobileMedia SPWr preliminay work relies
only on the WebStore SPL. MobileMedmlargerthan WebStore not onlyn
terms ofnumber ofcomponentdut also with respect to thariety of change
scenarios Therefore, his new case studyhelped ugo (i) increase theesults

reliability, (i) come up with new findingsand (iii) reducethreats tostudy
validity.

1 We also providenore detailed data analysied adeeper dicussion about the
new findings.The analysesthat now considered data collected from both
SPLs,reinforced thefindings from the first ase study and revealesgveral
new oneskFor instance, based on the MobileMedia case study, we observed
that the So(Separation of Concesp metrics tend to be less discriminatioe
larger systems.

Therefore, he novel contributiors of this extendedpaperarethreefold.

1 The development of public benchmark data with 113,152 data points
concerning four feature modularity metrics extracted from two SPLs
implemented with three different variability mechanisms in 12 different
versions.

1 The qualitative andquantitative analysisramework for change propagation
and feature modatity metrics thatan be reused in further replications of this
study.

1 Discussion and observations based on the obtained data about the role and the
singularapplicalility of eachvariability mechanism in the context of evolving
software product lines.

The rest of this paper is organized as folloWwsSection2, the implementation
mechanisms used in the case studyravésited Section 3presentghe study setting,
including the target SP& and their respectivechangescenarios Section4 analyzes
changemeasureshroughdifferentreleasesin Sections, the modularity ofWebStore
and MobileMediaSPLs are quantitatively analyzed artiscussedSection 6 presents
thethreatsto validity of this study Section7 presentsrelated work. Finally, Sectio8
conclules this paper

2 Variability Mechanisms for Software Product Lines

This sectiorrevisitssome concepts about the thteenniques evaluated ithis study:
conditioral compilation (CC), objeebriented design patterns (DP) and feature
oriented programming (FOPyVe chooseonditional compilatioranddesign patterns
because these are the stat¢he-practice options adopted in SPL indusfby 42].
Although there are other approaches that could be used to represent the feature
oriented paradign3], we chose AHEAD becausehts beenvidely studied §, 10,
12,14, 34].

2.1 Conditional Compilation (CC)

The CC approach used in this woik a welkknown technique forhandling
software variability [2, 5]. It has been used in programming languages like C for
decades andt is also availablein objectoriented languages such as C+HB81].
Basically, preprocessor directives indicate pieces of code that sheattmpiled or

not based on the value of preprocessor varialilas. pieces of code can be marked at
granularity of asingle line of code or to a whole file.

The code snippéh Listing 1shows the use of conditional compilation mechanism
by inserting the prgrocessing dirgtives.In this example, there areomedirectives
that characterize the CQvay of handling variability The directive //#if
defined (Paypal) in line 5, for instancejndicates the beginning abde belonging
to the Paypalfeature.The directive #endif in line 9 determines the end of code
associated tdhis feature. The identifieraypal used in the construon of these
directives isassociated with 8ooleanvaluedefined in a configuration filéor each
product of the lineThis value indicates the presmof the feature ira product, and
consequentlythe inclusion of thdéounded piecef codein the compiled product

1 private ControllerAction selectPaymentMethod(...) {
2 if (paymentType.equals ("Default")) {

3 paymentAction = new GoToAction ("payment.jsp");
4 }

5 //#if defined (Paypal)

6 if (paymentType.equals ("Paypal")) {

7 paymentAction = new GoToAction ("paypal.jsp"):

8 }

9 //#endif
10 return paymentAction;
11 }

Listing 1. Example of variability mnagement with conditional compilation.

2.2 Object-Oriented Design Patterns (DP)

Objectorienteddesignpatternsbecame widely usedwith the Gang of Fourbook
[27]. Designpatterns rely orobjectoriented mechanismsuch asdynamic binding
and polymorphism[15], to handle variability in SPLSThe example irListings 2, 3
and 4showsclas®sthat implementhe Decoratordesign patterfi27]. The purpose of
this decoration igo provide an entry point tadd a featurebehaviorin a pluggable
way. This pattern wa designed so that multiple decorators can be stacked on top of
each other, each time adding néeature functionality to an overridden methad
Optional features were mostly implemented with decoratdddlowing the
aforementioned stack method.

Both classs presemtd in Listings 2 and 3 implement the=corator interface
which contains thenit method declaratiorLine 5 in Listing 4 presents thenit
method in theeaypalControllerDecorator classthatdecorates thenit method
of a concrete componef(itisting 2). The decoration isupported bylynamic binding
mechanism and the targatlass will contain both actions: goToHome and
goToPaypal.

2.3 Feature-Oriented Programming (FOP)

Feature oriented programming (FOPY5] is a paradigm for software
modularization i considering features as a major abstraction. This work relies on

AHEAD [12, 14], which is an approach to support FOP based on-vgisp
refinemens. The main idea behind AHEAD is that programs are constants and
features are added to programs using refimet functionsWe chose Jak (AHEAD)
because it is a stable language and is widely studied in the literature related te feature
oriented programmingg8| 10, 12,14, 34]. The code snippsein Listings 5and 6show
examples of a class and a clasfinementused to implement variatigroints

The example irListing 5 shows an ordinary base class that implements a default
action for acheckout formandListing 6 presents theespectived=OP class refinement
that considersPaypal paymenin checkout.Line 1 of Listing 6 is a clausethat
indicatesa layer of the class refinements. Thaypal identifierin line 1is used to
composehe layers according teomepre-established order in tHePL configuration
script In general, the composition process P is similar to the behavior of a
pipeline. A base class is refined by one or more refinements in a certain order and the
result is a class containing the source code of the base claali elads refinements
from otherfeatures includedlhe creation of a product specified in a configuration
script that simply indicates the order of compaosition of layers.

1 public class ControllerMapper implements Decorator {

2 protected Map actions = new HashMap () ;

3 public ControllerMapper () {

4 init();

5 }

6 public void addAction (String an, ControllerAction ca) {
7 actions.put (an, ca);

8 }

9 public void init () {

10 addAction ("goToHome", new GoToAction ("home.jsp"));

11 }

12 public ControllerAction getAction (String an) {

13 return actions.containsKey(an) ? actions.get(an) : null;
14 }

15 }

Listing 2. Example of variability mechanism withe Decoratompattern(Concrete Component)

1 abstract class ControllerDecorator implements Decorator {

2 protected Decorator mapper;

3 protected Map controllerMap = new HashMap () ;

4 public ControllerDecorator (Decorator m) {

5 this.mapper = m;

6 init();

7 }

8 public abstract void init();

9 public void addAction (String an, ControllerAction ca) {

10 controllerMap.put (an, ca);

11 }

12 public ControllerAction getAction(String an) {

13 return controllerMap.containsKey (an) ?
controllerMap.get (an) : mapper.getAction (an);

14 }

15 }

Listing 3. Example @ variability mechanism wittthe Decoratopattern(Abstract DecoratQr

public class PaypalControllerDecorator extends ControllerDecorator {
public PaypalControllerDecorator (Decorator m) {
super (m) ;
}
public void init () {
addAction ("goToPaypal", new GoToAction ("paypal.jsp")):
}
}

W Joy Ul W

Listing 4. Example of variability mechanism withe Decoratompattern(Concrete Decorator)

1 public class ProcessCheckoutFormAction {

2 private ControllerAction selectPayment(...) {

3 if (paymentType.equals ("Default")) {

4 paymentAction = new GoToAction ("payment.jsp");
5 }

6 return paymentAction;

7 }

8 }

Listing 5. Example of variability mechanism with FOPaée class)

layer paypal;
refines class ProcessCheckoutFormAction {
private ControllerAction selectPayment (...) {
Super (ControllerAction, String).selectPayment(...);
if (paymentType.equals ("Paypal"”)) {
paymentAction = new GoToAction ("paypal.jsp");
}

O 0 Jo Ul WN -

}

Listing 6. Example of variability mechanism with FOEIgss refinemet

3 Study Setting

This section describes the study based on the analysis of two evolving software
product lines. One of these SPLs was constructed from scratch and the other was
adapted and implemented in pure Java and AHEAD to complete the infrastructure
setting. The study was developed to answer the research questions described in the
sequel.

3.1 Research Questions

The Dllowing research questions were posed in order to better understand the
impact of ugnhg featureoriented programmingn the SPL evolution

RQ1) Does the use of FOP has smootiiteange propagatiompact than CC and
DP during the evolution ofreSPL?

RQ2) Does the use of FOP provides monedular andstable designthanCC and
DP of the SPL featurem evolution?

3.2 Infrastructure Setting

The independent variable of this study is the variability mechanism used to implement
SPLs, namely, Conditional Compilatio (CC), Objectoriented Design Pattern@®P)
and Featureoriented programmingFP). Two subject systems are used to analyze the
behavior of the dependent variables: change propagation measures and modularity
metrics. The study was organized in four phases: (1) construction of two subject SPLs
with complete releases that correspond to their respective change scenarios using the
three techniques aforementioned for each one, CC, DP and FOP, (2) manual feature
assignment of all produced source code, (3) change propagation measurement [52]
and modularity metrics calculation [47] and (4) quantitative and qualitative analysis
of the results.

In the first phase, the first two authors implemented, from the scratch, all the source
code of WebStore SPL. The FOP solution of WebStore was developed first and it
contemplates the five releases already mentioned. The other solutions were
implemented next, using the FOP solution as baseline. The other SPL, MobileMedia
[24], was already used in previous studies. There is a full CC implementation of this
SPL available and, thus, only DP and FOP solutions had to be implemented.

In the second phasd] aode wasmanuallyassignedaccording to eaclSPL feature.

The feature assignmenttask was performed usinthe Prune Dependency Uk
proposed in20]. The concrete result of this phase was text files, one for ®aaice

code file,where each line wamarked with the corresponding featufiche feature
assignmentaskwasdone so that thdevelopers of a versiotho not mark their own
produced codaVNe have considered only source code files in our analysis. Other files,
such as makefiles and configuration scripts, generally represent a minor fraction of
artifacts in maintenance activitieehus, we have not considered them in our study

In the third phase, change propagation measures [52] were collected and modularity
metrics related to Separation of Concerns [47] were calculated. We have made all
calculations using the metrics formulas by manually counting the feature lines.
Finally, the results were analyzed in the fourth phase. The next sections present the
analyzed SPLs, WebStore and MobileMedia, and discuss their change scenarios.

33 The Evolved WebStore SPL

Thefirst target SPL was developed to represent major features iofeaactive web
store. It waslevelopedor academic purposénspiredby asample application called
Java Pet Stotefocusing on the key features available in neab storesystemsWe
decide to use WebStore because Java Pet Store is a public available apaivatit
was used in a previous study with similar purpdsg}. [We have alsaesignedour
changescenariogthe same foall studiedtechniques- CC, DP,and FOR thatcould
exercse the SPLevoluion.

WebStoreis an SPL for applicationsthat manage pructs and their categories,
show products catalognd control paymentd.able 1 provide some measures about
the size of the SPL implementatiam terms of humber of componentsumber of
methodsand number of lines of source code (LOC)assesand classrefinements

L http://www.oracle.com/technetwork/java/petsto1-02-139690.html

wereaccountedas componentd.he number of components varies frof(2C) to47
(FOP).

Table 1. WebStoreSPL implemetation

CcC FOP DP

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 RS
#Components 23 23 26 26 26 25 35 44 41 47 28 32 38 40 44
#Methods 138 139 165 164 167 150 170 200 198 208 142 147 175 177 182
LOC (aprox.) 885 900 10451052 1066 945 1077 1257 1244 1303 915 950 1107 1121 1149

Figure 1 presents a simplified view of tNMéebStore 8L feature model[13].
Examples of core features a€ategoyManagement andProductManagement. In
addition, some optional features abdsplayByCategory and BankSlipWe use
numbers in the top rightand corner ofa feature in Figure 1 to indicat@ which
release the feature was included (see Table

BackEnd
Content
Management

Category
Managment

DisplayOptions

Display
ByCategory

Display
‘WhatlsNew

Product
Managment

Figure 1. WebStoreBasicFeature Model

The WebStore versions are very similar frahe design poinof-view, even
though they are implemented using three distinct variability mechanismall
versions tle release Rtontainsthe coreof target SPLAIl subsequent releases were
designedto incorporate theequiredchangesn order to include the corresponding
optional feature and to transform optional featurieso mandatoryFor instance, the
version tha uses FOP was developést, trying to maximizethe decomposition of
the featuresAll componentselated tdfeatures thabhavenot shared any piece of code
werepartitioned into one or mongarts.This explains why release R1FOP contains
more compaents than release R1 that us€C. All subsequentcenarioswere
incorporated using insertions modifications or removals of classes and class
refinements.

In CC versions scenarioswere incorporated in the form of newassesand
changes in existing clags. Onlycode ofoptional featuresvas markedwith CC
directives, such asifdef and #endif (Section 2.1).On the other hand, the

WebStore version that uses objeciented design patterns was implemented mainly
basedon two design patterns: Abstract Faigtand Decorator{27]. Their roles are to
mimic FOP mechanismdn order to provide smootlieature code additions and
different product instantiations.

3.4 Change Scenarios

As aforementioned, in the first phase of our investigation we designed and
implemented a set of change scenarios. A total of four change scenarios were
incorporated into WebStore, resulting in five releases. Table 2 summarizes changes
made in each release. The scenarios comprised different types of changes involving
mandatory and optional features. Table 2 also presents which types of change each
release encompassed. The purpose of these changes is to exercise the implementation
of optional and mandatory features to assess variability mechanisms properties in the
context of software product line evolution.

Table 2. Summary of scenarios in WebStore

Release Description Type of Change Extent of Change
R1 WebStore core
Two types of payment Inclusion of optional | No extensive modification
R2 included (Paypal and feature because the features can
BanksSlip) well localized.
New feature included to Inclusion of optional | Required changes in
manage category feature components related to
R3 pProduct andinsertions of
new components related ti
Category.
The manageent of Changing optional The inclusion of the new
category was changed to | feature to mandatory | feature did not demand
mandatory feature and ne and inclusion of major modifications.
R4 feature included to display| optional feature Switching a feature from
products by category optional to mandatory
required extensive
removals in the DP.
New feature included to Inclusion of optional | Since this feature did not
RS display products by neareq feature affect other functionalities,
day of inclusion only minor changeand
insertions were required.

In generaljt's expected that evolution scenarsvide the increase of variability
of the SPLBut in some cases this may not ocas it did inreleaseR4 of WebStore
SPL This kind of evolution wasbserved in othestudies and has beefassified as
"New version of Infrastructute In this case,this evoldion scenario leads to a
decrease of the functionality and this can be explainedhbyfact that some
functionality have a tendency to move from the perimeter afystem towards the
centre[48].

35 The Evolved MobileMedia SPL

The secondtarget SPL was®riginally developed teserve as a benchmark for studies
on aspecbriented prgramming P4]. It was designed for academic purpose, but
includingdiversechangesaenaros that could exercise its evolution.

MobileMedia P4] was developed based ampreviousSPL, called MobilePhoto
[53]. Table3 provides some measures about the size of the SPL implementations in
terms of number of componentsumber of methodand number blines of source
code (LOC). Classes and class refinements waereunted as componentsOC were
accounted without considering blank linde average number of components varies
from 22 (CC) to 141 (FOP). As occured in WebStore FOP requires more
compnents to implementvobileMediafeatures.Moreover MobileMediaDP-based
solution uses more lines of code than E@P implementationexcept in release. 1t
is important to notice that DPased solutiohhave a larger number of methods than
other solutios. This can be explainely the fact thaproduct configuratiosin DP-
based solutionsre doneat runtime using specific creationamnethodsto permit
variationp o i rnstant&ation These methods are responsitiestackone or more
featuredecoratomobjectsinto a base object

Table 3. MobileMediaSPL implementation

CC FOP DP

R1 R2 R3 R4 R5 R6 R7 R1 R2 R3 R4 R5 R6 R7 R1 R2 R3 R4 RS5 R6 R7

#Comp 22 23 23 28 35 44 49 54 63 73 86 106 127 141 34 49 55 74 86 108 135

#Meth 113 132 135 153 191 227 267 143 177 191 216 285 331 368 132 191 209 275 337 417 518

LOC 971 1147 1214 1380 1852 2334 2926 1142 1356 1458 1629 2163 2498 2827 1064 1430 1544 1936 2440 2952 3682

Figure 2 presents a simplifit view of the MobileMedia SPL feature model.
Examples of core features amlbumManagement andViediaManagement In
addition, some optional features &w®&vorite Sorting, SMS Transfer and Cddgdia
Similar to Figure 1numberson the top righthand corneiof a feature in Figure,
wereusedto indicate in which release the feature was included (see Zpble

MobileMedia

Album
Management

Figure 2. MobileMediaBasicFeature Model

~ N . 3
Favourites

sMs)
Transfer

Create/Delete

Media
Management

View/Play

Copy 5
Media

3.6

Change Scenarios

Unlike WebStore, which was developed from scratch, we have a full CC
implementation of MobileMedia available to us [24]. However, we had to design and
implement the corresponding set of change scenarios in FOP and DP. Six change
scenarios were considered in MobileMedia, resulting in seven releases. Table 4
summarizes changes of each release. The scenarios comprised different types of
changes involving mandatory, optional and alternatives features. Table 4 also presents
which types of change each release encompassed. The purpose of these changes is to
exercise the implementation of optional, mandatory and alternative features to assess
variability mechanisms properties in the context of software product line evolution.

Table 4. Summary of scenarios MobileMedia

Release Description Type of Change Extent of Change
R1 MobileMedia core.
New feature added to | Inclusion of optional | The featuresorting required
count the number of | and mandatory addition of new components
times a photo has beel| features and change components relat
viewed and sorting to the use of this feature.
R2 photos by highest For the featur@ditLabel, a
viewing frequency. refactoring was conducted
New feature added to extracting a new
edit the p PhotoController from the
BaseController.
New feature added to | Inclusion of optional | The changes were narrowly
R3 allow users to specify | feature localized
and view their favorite
photos.
New feature added to | Inclusion of optional | A major refactoring of
R4 allow users to keep feature BaseController was carried
multiple copies of outproducing four new
photos. specialized controllers.
New feature added to | Inclusion of optional | New controllers had to be
send photo to other feature included. New components
users by SMS. related to SMS transfer had tq
R5 be included. The
SMSTransfer feature was
designed as a specialization ¢
thecopyPhoto feature.
New feature added to | Changing of one A major refactoring of
play music. Thephoto | mandatory feature PhotoController and
management basic into two alternatives | photoListController was
R6 features_were carried out producing two new
generalized to manage generic media controllers.
media and ViewPhoto New controllers related to
wasturned into an musicoperationsad to be
aternative feature. included.
Newfeature added to | Inclusion d New controllers related to
R7 manage videos alternative feature video operationsad to be

included.

4 Change Propagation Analysis

This section presents a quantitative analysisnswer RQ1In particular, we are
interested to knovihow different variability mechanismdfact changes in software
product line evolution.

Table 5. Summary of scenarios in MobileMedia

WebStore Releases Mobile Media Releases
R2 |R3 |R4 |R5 |R2 |R3 |R4 |R5 |R6 |R7
cc ol 3] o] of 2| ol 5| 7| 17| 6
Added | pop 4| 6| 2| 4| 10| 10| 23| 21| 74| 14
DP 10] 9| 8| 6| 15| 6| 20| 13| 79| 29
g cc ol o] o] ol 1| o] o] o 8| 1
g:’ Removed | pop 0 0 0| o 1 0| 10 1] 53| o0
3 DP o] of 11| ol of o 1| 1| 57| 2
cc 2| 3| 5| 4| 7| s| 7| 7| 1| 2
Changed | Fop 1/ 1| o] o] 10| 6| 23| 10| 28] 13
DP 4| 4| 4| 1| 13| 11| 29| 11| 11| 27
cc 1] 26| o| 3| 22| 3| 37| 38| 103 47
Added | pop 5| 28| 2| 5| 37| 14| 63| 70| 190 40
DP 21| 30| 32| 10| 60| 21| 99| 63| 285|110
P cc o] o o| 3| o] 19| o] 67| 7
% Removed | Fop ol o| o o 3| o 38| 1| 144| 3
= DP 1] o 34| o| 1| 3| 33| 1| 205] 09
cc 2| 2| 6| 2| 9of 7| 10| 7| 26| 30
Changed | Fop 1| 1| o] o| 12| 8| 24| 12| 29| 13
DP 3| 4| 3| 1| 25| 11| 30| 11| 37| 24
cc 15| 148| 7| 14| 197| 67| 538| 478 1386 | 694
Added | pop 35| 160| 14| 28| 243| 102 | 490 | 551 | 1534 | 340
. DP 132| 181 179| 59| 390| 132| 678| 511 | 2189 | 820
g cc 0ol 3| o| of 21| o 372] 6| 904|102
S Removed | Fop ol 3| o] o| 29| ol 39| 17| 1109| 11
% DP 0| 1] 192| of 24| 18] 286| 7| 1677 %
cc 1| 2| o] o 28] 7| 32| 10| 75|102
Changed | pop 1| 2| o| of| 21| 10| 83| 8| 62| 19
DP 9| 2| 3| o 45| 13| 85| 12| 75| 46

4.1 Results

The quantitative analysis uses traditional measures of change impact [29, 52],
considering different levels of granularity: components, methods, and lines of source
code (Table 5). A general interpretation of these measures is that a lower number of
modified and removed artifacts suggests a more stable solution, possibly supported by
the variability mechanisms. In the case of additions of artifacts, we expect that it
indicates the conformance with the Open-Closed principle. In this case, the lowest
number of additions may suggest that the evolution is not being supporteshby
intrusiveextensions.

Webstore Mobile Media
0,35)
—CC 8 —CC
0,3 ——FOP 07 | =——FOP
DP i
s 0,25 0B /\ oP
= -
= =
2 g2os
g 02 g / \
E Eoa
Sous s / /\\
o0 2
] "//\ 803 ——
= 5 0
-2 PN b »\//
02—
N f‘
0,05 / \ 01
[} a \/
WSR2 WSR3 WS-R4 WSR3 MM-R2 MM-R3 MM-R4 MM-R5 MM-RE MM-R7
032 0.8
—CC J—
018
—FOP o7 ——FOF
016
A DP 0.6 FA DP
014
3 A\ fos
L2012 / \\ 25 / \
K T
2o E 04 / A\
3 / N\ i '/ \
ﬁ 0,08 l \ ﬁ 03 /
I~/ \
008 /4 \ 02 // \
002 // \ 01
o N— o
WS-R.2 WS-R3 WS-R4 WS-R.5 MM-R2 MM-R3 MM-R4 MM-R5 MM-R6 MM-RT
0,18 038
—_—CC —_—CC
0,16
" —FOP 0.7 —FOP
014 oP 06 A oP
0,12 A as /\
o [\\ g o
S o1 / \ 2 / \\
- o g4 —
a Ys
g 0,08 E 4
/ \ o
0,06 ‘// \ = \
0,04 // \ 0.2 / \
0,02 / 01 A /
0 0
Ws-R.2 WS-R3 WS-R4 WS-RS5 MM-R2Z MM-R3 MM-R4 MM-RS5 MM-R6 MM-R7

Figure 3. Additions in WebStore and MobileMedia

Figure 3 shows theelativevaluesof added components, methods and lines of code
in releases of both the WebStore SPL (left) and the MobileMedia SPL (right).
general, he CC mechanismpresentdower number of addecomponentand methods

in both subject systems compared to DP and .FI®#s may be a result of how the
insertons in CC havebeencarried out by modifying existenttomponents instead of
creating new oneslhe lower number of added components of CC iseaght with
the practice for nowpenclose systems that introduces changes directly in the
existent componentsThe number of added componentsuld be higher if for
examplewe simply add conditional compilatiodirectivesaround a method call that
is declared by a new clasBlowever, this solution, i.e. including more components
artificially in a CC approach, would not be as usual as what programmers do in
practice with annotative approaches, because we are considering that typically
developers annotate in loco to introduce variations. Moreover, this alternative
solution would artificially mislead the measures that are expected to represent the
mechanisms provided by DP polymorphism and FOP extensions that enable the
Open-Closed principle.

Webstore Maobile Media

0,25 05
0,45
—FOP —FOP /
0,2 04
@ op w DP /
= € 035 £
g 015 g 03 —
E £
3 8025 — 2%
- k-] Fa¥
01 02 —
=] LN
g A N4 N\A AN
0,05 0,1 7 v]
\ 0,05
a a
WS-R.2 WSR3 WS-R4 WS-RS5 MM-R2 MM-R3 MM-R4 MM-R5 MM-RE6 MM-R7
0,04 0,14
e CIC s O T

0,035 — FOP 012 —_—
003 // \\ oP 01 /\ /— ::P
AN

- s VAN WA
A h-“'-___‘/ \ 004 v "

0,01

Changed Methods

"~
Changed Methods
[=]
8

WS-R.2 WS-R.3 WS-R.4 WS-R.5 MM-R2 MM-R3 MM-R4 MM-R5 MM-RE MM-R7

e CC

——FOP

DP

Changed LOC
)
=)
5]
I
Changed LOC

0,002 —
0,001 /__—-‘\
o o
WSR2 WSR3 Ws-R4 WS-RS MMR2 MM-R3 MN-R4 MM-RS MM-RE MM-R7

Figure 4. Modifications in WebStore and MobileMedia

ConcerningMobileMedig there is no sharp difference between the measures of the
three mechanism3he number of adiions with DP is slighter greater than FOP that
is slightly greater than CCrhis behavior can bexplained by the fact thatroduct
configuratiorsin DP-based solutions ardoneat runtime using specific creational
classes and methods permitvariationp o i mplénsentationFor both SPL, Here
is aratio of about two compieents using design pathsfor eachFOPrefinement In
generalto implement a variation poirih DP, it is necessary to implement decorator
clasgscontainingthe additional behavigsimilar to a FOP refinemengnd another
concerning the inantiation of thedecorator classe

On WebStore SPLthere is clearly higher number of components, methods and
LOCs with DP than with FOP and CG6ince this LPS ismaller than MobileMedia
SPL,i.e.,it has fewer components, the presencdeasign pattern classes contribute to
considerab} increasethe difference betweetihe measures values$n release 4, this
difference is even higheThis can be explained because the change of a feature from
optional to mandatorgaused several changes at design and architecture levels. These
changes involved the removal of all classes responsible for implementing the optional
feature and also the reinsertion of classes andmethodsto implement the new
mandatory feature.

Figure 4 shows the relative values of changed components, methods and lines of
codein all releases of both the WebStore SPL (left) and the MobileMedia SPL (right).
The FOP mechanism has clearly a lower number of modified components and
methods in the WebStore SPL compared to DP and GiS.wlasdue to thesimple
nature offeaturesmplemented. In general, the number of components modifications
in MobileMedia is in accordance with the variability mechanisms implementation.
Both, DP andFOP have a greater number of components when compared to CC.
Thus, it is expected that the numbercoimpnents changeke proportional to the
number of componentsin release 4 of MobileMedia, the number of changed
components is even lower in CC, because the respective versions in FOP and DP have
been thoroughly refactored to support new features that veoumhe in release 5. This
can be verified in release 5 where changes were almost the same.

Figure 5 shows the relative values of removed components, methods and lines of
code in releases 2 to 5 of both the WebStore SPL (left) and the MobileMedia SPL
(right). In the WebStore SPL only in release 4 using DP had a significant difference,
because the number of components, methods and lines removed were significant
higher than in CC and FORhis is becaus¢he featurechang from optional to
mandatory, resultingni removing the design pattercomponentsthat allowed
enabling this featureConsidering release 4 in MobileMedia SPL, the number of
removed components in FOP release was significantly higher than in DP and FOP.
This can be explained because this versi@s westructured to better support the
changes of release Byhere severaktlassrefinements needed to be remdve
support this restructuring. This behavior was also observed in release 6 of
MobileMedia, where the insertion afternativefeatureorcedmajor restructuring

Webstare

Mabile Media

03

0,25

0.2

0,15

01

Removed Components

—FfoP
DP

| —FOP

Re moved Com ponents
o
w

WS-R2

WS-R3

WS5-R4

WS-R5

MM-R.2 MM-R.3 MM-R4 MM-R5 MM-RE6 MM-R7

0,25

02

01

Removed Methods

——FOP

DP

WS-R.2

WS-R.3

WS-R4

WS-R.5

Removed Methods

——FOP

oP

AN\
WA VAR

MM-R.2 MM-R3 MM-R4 MM-R5 MM-RE MM-R7F

0,18
0,16
0,14
012

- 01

ved LOC

]
goos

Re

0,04

0,02

—CC

— FaP

DP

WS-R.2

WS-R.3

WS-R.4

WS-R.3>

4.2 Discussion

Removed LOC
=]
w

N
N

WH

oP

_/ N

MM-R2 MM-R3 MM-R4 MM-R5 MM-RE MM-RT

Figure 5. Removals in WebStore and MobileMedia

Considering both systems and releases, the most significant difference noted in the
change propagation is that CC releases have consistently lower number of added
components than DP and FOP. Moreover, the results showed that FOP and DP strive
to accommodate changes that requir@or featuresestructuringand usually demand
a greater amount @omponentemovals Based on components insertions results, we
suggest that CC does not adhere to the Open-Closed principle as FOP and DP adhere.
Depending on how the additions were carried in CC, these values could be
proportional to those presented by FOP and DP. However this would lead to a larger
number of changes and removals in CC, breaking the compliance between the three

mechanisms. We could not observe a significant difference between FOP and DP
mechanisms, because if in the WebStore, DP introduces more components than FOP,
in MobileMedia, we have the inverse situation in three of four change scenarios.

5 Modularity Analysis

This section presentnd discussethe results for the analysis of the stability of the
SPLs designthroughout the implemented changes.stipportour analysiswe used a
suite of metrics for quantifyindeatue modularity[47]. This suite measure the
degree to which a single featunéthe system maps to: (i) components (i.e. classes
and class refinements) based on the metric Concern Diffusion over Components
(CDC), (ii) operations (i.e. methods)based orthe metric Concern Diffusion over
Operations (CDORNd (iii) lines of code— based on the metrics Concern Diffusion
over Lines of Code (CDLOC) and Lines of Concern Code (LOQQ) We choose
these metrics because they have bapplied as benchmark in pieus similar
empirical studies concerning desigiodularity andstability [18, 23, 24, 47].

5.1 A Survey of Feature Modularity Metrics

The metrics presented in this sectiomave a common characteristic that
distinguishes them from traditional software metfiz3]. They capture information
about the realization deaturescutting across one or momponentsi.e., these
metrics are used fayuantifying Separation ofConcerns (SoCJ)23, 47]. They can be
applied to any kind of software artifact in either edtjoriented or featureriented
programs. Although these metrics were originally proposed to quantify concern
propertiesthey can also be used to quantify features properties.tdimes concern
and feature are used without distinctiarthis study

Sart ' A n n a47]adfined three metrics that quantify scattering and tangling of
featuresacross a set of components, operations, and lines of code. The metrics
Concern Diffusion over Components (CDC) and Concern Diffusion over Operations
(CDO) quantify he degree dfeaturescattering at different levels of granularity.e.,
components and operations, respectively. The former counts the number of, classes
interfacesand refinementghat contribute to the implementation offeature The
latter counts th number of methods and constructors realizifigature In addition
to these two measures, the authors defined Concern Diffusion over Lines of Code
(CDLOC) that computes the degreefeéturetangling.For instance, igen a certain
featureF, this metricc ount s t he number of “switches” betwee
realizing otherfeatures[47]. A switch occurs when a code block realizing F is
followed by a code block realizing anothdéeature and viceversa. Besides
Sant ’, é&themaathors defined additial metrics to quantify propertie$ features.

For instance,Eaddy and his colleagug®1] proposed ametric called Lines of
Concern Code (LOCC). LOCC counts the total number of lines of code that
contribute to the implementation offeature We adaptedhese metrics considering

the ratio of the measured value to the total value on that release, for instance, CDC
was calculated as the ratio ofasses that contributes to the implementation of a
feature to the total number of classésaddition our rehtive CDC represents the
percentage of classes that are used to implement the fe@hiserelative metrics

enabled us to analyze together the set of metric values for all fedtareall the
enployed metrics, a lower value implies a better result. il@etaliscussions about the
metrics appear elsewhei2l, 23, 26, 47].

5.2 Simple Analysis of the Modularity Metrics

This section presents and discusses the results for the metrics presented in Section 5.1.
We analyzed 11 features from WebStore that include 4 optional and 7 mandatory
features and 15 features from MobileMedia, 3 optional, 3 alternative and 9
mandatory. Optional and alternative features are the locus of variation in the SPLs
and, therefore, they have to be well modularized. On the other hand, mandatory
features also need to be investigated in order to assess the impact of changes on the
core SPL architecture. From the analysis of the measures, interesting situations,
discussed below, naturally emerged with respect to which type of modularization
paradigm presents superior modularity and stability. The data was collected and
organized in one sheet for each metric. For WebStore, each sheet has 4,442 lines, i.e.,
one line for each combination of feature, version, technique, and artifact. For
MobileMedia, each sheet has 23,846 lines. Therefore, 113,152 points were measured
in the whole study.

In this subsection, we present a simple analysis of the modularity metrics based on
the metrics mean values for each verskigure 6 presents CDC, CDO, CDLOC and
LOCC mean values for each release of the WebStore Bt CDC mean values for
FOP were consistently the lowest in all releases. The values for DP stayed in between
FOP and CC. The CDLOC mean values for FOP were also consistently the lowest in
all releaseswith stronger significant difference. However, for CDLOC, CC has
presented lower values than D#utthe difference of the values tended to decrease in
later releases, being almost the same in release 5. For CDO and LOCC there was no
significant differelce between releases or techniques.

Figure 7 presents CDC, CDO, CDLOC and LOCC mean values for each release of
the MobileMedia SPL. The CDC values had similar behavior as those of WebStore.
FOP values were consistently lower than DP values, which weréstatlg lower
than CC values. For CDLOC mean values, differently from WebStore, there was no
significant difference between FOP and DP, but CC was consistently greater than
FOP and DP. Alsas occurred for WebStore, consider@®BO and LOCC there was
no significant difference between FOP, DP and CC. However, interestingly, for
release 3, DP presented the lowest mean values of CDLOC, CDO and LOCC.

coc

Coo

coo

coc

0,35

. 0,025
. —m— DP
!\\ * FoOP
0,30 N
NN
SN 0,020
. N !
0,25 N
\
A _\ B
A —.— g
0,20 ~. 0,015
> ~ -
.
* - —
0,15 -
* *
. 0,010
0,10
1 2 3 4 < 3
Version ‘Version
Q22
0,19
0,18 0,20
0,17
0,16 018
0,1)
S 0,16
0,14 2
0,13 0,14
0,12
0,11 0,12
0,20
T 10 .
1 2 3 4 5 3
Version Version
Figure 6. Metrics values through WebStore evolution
0,30 —e— CC
‘\\ —=— DP 0,025
4 - FOF
0,25
\\'\ 0,020
u
0,2 R AN
N \ 8
N e 2 0015
015{ ¢ ~ =
.- \\
iy — A
- S 0,010
0,1 ¢ o e
L
T m
*
0,005
0,05 *
1 2 3 4 5 6 7
Version
0,150
0,150
0,125
0,125
0,100 g
S 0,100
0,075
0,075
0,050
0,050

4
Version

Version

Figure 7. Metric values through MobileMedia evolution

5.3 Analysis of the Cumulative Distribution Function for the Modularity
Metrics

In this subsection, we present more detailed analysis of the modularity metrics
consideringthe dispersion of data. Our analysis is based on the empirical cumulative
distribution functions of the data. The analyses were performed using Mih&&b
The empirical cumulative distribution functigecd) can be used to evaluate the fit of
a distribution to our data and to compare the different distributions of our sample. The
steppedecdfresembles a cumulative histogram without bdise distribution that
best fitted our data wasgBarameter Gamma. Our data definitely does not follow a
normal distribution. Indeed, it does not follow a symmetric distribution. The data
values are typidly concentrated in smaller valuds. order words, the median values
for the metrics are generally smaller than the mean values.

The interpretation of thecdfis done as follow: the higher is the area under the
curve, the higher is frequency of lowerlwes for the corresponding metrics.
Considering that the lowere thevalues for feature modularity metrics, the better is
the nodularization, we consider that the best metrics curve is the one the presents the
highest frequency of lower values.

Figures 8and 9 show the empirical cumulative distribution function for the feature
modularity metrics of WebStore and MobileMedia, respectively. One interesting point
is that WebStore and MobileMedia, despite some differences, have presented an
overall similar behvior, especially in CDC, CDO and LOCConcerning CDO, w&
can observe that FOP outperformed DP and i@Chboth systems, and DP
outperformed CCFor CDLOC, we can observe that FOP clearly outperformed CC in
both approaches, and clearly outperformed DP irbS¥ere. In MobileMedia, FOP
just slightly outperformed DP. The fact is that DP had a performance similar to FOP
in WebStore.

For CDO and LOCC, we could not see significant differences between the three
approaches in both systems. Nonetheless, it is pessibsee a slightly better
performance for FOP in both systems.

In Figure 10, we can observe the tendency of the behavior of the metrics for each
version of the system. We can see that, in general, the same global result previously
presented can be obsedvin all versions. However, this versibased analysis shows
that in the first versions, the CDC and CDLOC metrics have higher frequency of
lower values for FOP. In general, we can observe that the higher is the version, the
lower is the metrics valuesif all approaches and the lower is the difference between
the approaches, but still discriminative in the case of CDC.

Figure 11 presents the same metric values from the feature point of view. We could
see that independently from the used approaches, feah@es tend to produce a
similar behavior. Some features have a remarkable worse behavior than all the others
for all metrics, such a®lbumManagement Black), PhotoManagementDéshed
Blue). They were followed by Bas®#&shedRed), SMS TransferashedGreen).

These features are naturally complex. Concerning CDLOC, we can observe that
besides the aforementioned features, all approaches had not good metric values for
features Sorting (Blue Dashébtted) and Favourites (Lilac Sofldotted).

Parcent

100 100
80 80
® 60 = 60
o o
4 g
£ a0 t 4
20 20
0 0
00 0.1 0.2 0.3 04 05 0.6 07 0.8 0,00 0,02 0,04 0,06 0,08 0,10
cbDC CDL
100 SN 100
80 80
£ 60 E 60
a [
g 3
I g
g . d 4
20 20
0 0
0,0 0,1 0,2 0,3 04 0,5 0,6 07 0.8 60 o1 02 03 Ga 05 05 07 08
CDO Locc
Figure 8. Empirical CDF for all versions of Webstore§arameter Gamma)
100 100
80 80
- 60
t .~ 60
o =
o o
] g
40 3 .
20
20
0
0
00 01 02 03 04 05 06 07
e 0,00 0,01 0,02 0,03 004 0,05 0,06 0,07 0,0
CDLOC
100 - 100
80 — <
— — DP 80
---- FOP
&0 - 60
[+
o
o
g
40 2 a0
20 20
0 0
o0 1 8,2 0.2 01 0,0 0,1 0,2 0,3 0,4 0,5
Do

LOCC

Figure 9. Empirical CDF for all versions of Mobile Media(8arameter Gamma)

Percent

Percent
|
!
h

o
7
100 —_— 0.00 0,35 0,50
1 cc
— — P
0 I" . . FoP
0,00 0.25 0.50 cbo

-
T
53
v
g
] T . .
100 4 _———— = 0,00 0,05 0,10
pr
504 cc
— — P
(B i . FOP
000 005 010 cDLOC
o0 0,4 0.0
! ! !
100 L E]
i T — — -
g T s
N 4‘;’/ j g
o4
—- = £ 100
= e e ———— F
5} - i o
J . .
7
100 | ——————— 00 04 08
»
50 f cc
)f —— op
ol . . FOP
0.0 0.4 0.8 LocC

Figure 10. Empirical CDF per versions of MobileMedia-p&rameter Gamma)

100 1

50 4

Feature

—— AlbumManagement

— — — Base
CapturePhoto

— - — CaptureVideo

CopyMedia

CopyPhoto

— — — CreateAlbum

————— CreateMedia

— - — CreatePhoto
DeleteAlbum

—— DeleteMedia
DeletePhoto

————— EditPhotolabel

— - — Favourites

— --— MediaManagement

Music

Photo

————— PhotoManagement
PlayMusic

— --— PlayVideo

——— ReceivePhoto

— — — SendPhoto

————— SetFavourites
SMSTransfer

— --— Sorting
Video

— — — ViewFavourites

————— ViewPhoto

PP HL N PP
IS IS

CDLOC

i

0,0 0,1 02 03 0,4 0,

Ccbo

100 |

50 -

100 |

50 -

100 |

50 -

0,0 0,1 0,2 0,3 04 0,5 0,6

LOCC

Figure 11. Empirical CDF per featuresf MobileMedia (3parameter Gamma)

5.4 Discussion

FOP succeeds in features with no shared code. This situation was observed wittix
featuresof the MobileMediaSPL, namely CreateAlbum Delete Album CreatePhoto,
DeletePhoto, EditPhotoLaheind ViewPhotoSomefeatures with no shared code in
WebStore SPL namely DisplayByCategory and DisplayWhatlsNevproduced
similar resultsThe common characteristic of thefeaturess thatthere is nassource
code sharing or overlapping i.e., they do not share statemets, methodsor
componentsvith other featuresThe FOP solution presents lower values and superior
modularity in terms of tangling (CDLOC) and scattering over components (CDC)
which aresupportedby data inFigures6 to 11. Figure 11 for instanceshows thatthe
measured curves dhese featureare concentrated in lower values with FQme
effectiveness of FOP mechanismanodularizethesefeatures is due to the ability to
move the code in charge odalizingthe feature fronarge classes to a set gmall
cohesiveclass refinementConditional compilation lacks this ability because it has a
somewhat intrusive effect on the code, due to the rdfedddng #ifdef and
#endif clauses located at places where features crosEeetesults obtained from
this quantitative analysicorraborate with the common knowledge about feature
refinement mechanisms being more adequate to modularize features with no shared
code The analysisof the otherscatteringmetrics (CDO and LOCClid not follow

the same trendf CDC, which can be explainedith the fact thathe granularity of
the methods and lines of code lower and the distribution of featureoccurs in a
proportional fashiorover all mechanismsOn the other handjree the granularity of
components ishigher, the respective impact on modularity metrics isnore
observable

When optional features are turned mandatory, DP removal may cause the SPL
architecture destabilization. Another interesting situation that emerged in our
analysis was the behavior of releasising the DP mechanision the transitionfrom
release 3o release 4#f WebStore For instance, while the FOP solution handles this
particular situation without major issuesg wbservedhe growth of the metricsn the

DP implementation when an opt@infeature wasurned mandatoryas observed in
Figures 4 and 5Thisproblemcan be explained by the fact that the implementation of
an optional featuravith DP requires a larger number of components compared to
implement the same feature being mandatbherefore, developers have to carefully
designflexible core architecture to allow the inclusion of mandatory features. If the
patterns used to implement optional features are removed when the features become
mandatory, then the architecture may degeaeaatl become unstabken alternative
solution would bekeeping the features modularized in that patterns and make sure

that the modules are always present in all products. However, this solution would not

be fair to this specific change scenario since by turning an optional feature into
mandatory, we should remove the components responsible for variation, i.e., the
pattern implementation. If we keep pattern modules responsible for an obsolete
variation point, it means that we are keeping needless code in the SPL, which could
adversely affect future evolutions. For instance, the presence of these modules could

turn program comprehension tasks more arduous. Moreover, keeping these DP would
break the compliance between the SPL source code and feature model, since the SPL

source code would contain modules created to support the instantiation of an
inexistent variation point.

Crosscutting features are problematic for all studied approaches. We could see
from Figure 11 that therosscuttingfeaturesSorting and Bvouriteswere not well
handled by the approaches as the majority of the other features. The reason is that the
typical design to introduce these features intrinsically tarmhelsscatterghar code.
The code related to these featureshighly tangled m some base components of
MobileMedia such aslmageData, MediaDataand MedialUtil Due to this high
coupling these features ar@so scattered across the source code of ofbatures.
These components were minimally modularize® thus, they aralmost equally
implemented with the threevaluated mechanisms.In these cases, the use of
aspectual approaches would enhance modulafitiiese problematiteatureseasng
their code separatidi] [8].

Ratio-based analysis of metrics tends to be less discriminative in larger systems.

The largeris theevaluated softwargersion, the lowearethe metris ratios for all
approaches and the lower is tileservablaifference between the approachidence

we should consider that the size of the system caradmpn the discriminative
capability of the metricto evaluate software modularity and stabiliye performed

our analysis based on thdicaof the measured values by the number of components
Since it is necessary to compare different mechanismepect lower differences in
metric values for larger systenwhie to the greater number obmponents This
situation occurs from the intrinsic nature of the studied metrics that evaluates
scattering and tangling related to the whole system.

On the use of a single variability mechanism to construct SPLs. In practice,
developersdo notnecessarilyuse only a single mechanism to address all kinds of
featuresduring SPL construction. Theyften combinetwo or more variability
mechanismsdepending on the kind ofeature, feature location and granularity,
guantification level[6, 34, 46]. Recent research shows that there is no silver bullet
when it comes to mechanisms that manage variability in S&L46]. We would
introduce more independent variables in thegtémr example, with theiseof hybrid
approacbs However, there isstill lack of data and study about tlrength of
individual mechanismsFor this reason, wedecided to study the approaches
individually to identify their unique characteristicsFor example, anotative
approaches, like CC, are well known to support -fireined extensions on
statements, parameteend conditional expression81, 34]. On other handcertain
fine-grained features are very hard, if not impractical, to implement with RAODP.
these pointsconsidered the analysis of individual mechanismstowed that in
general,FOP refinements providmore benefits related to modularity and changes
propagation when comparetb CC and DP.In order to draw more specific
conclusionsabout tle mechanismssuch asto proposeprogrammingguidelines to
optimize theiruse, it is necessary to analyze them in more studiessidering
different domainschangescenariosand types of features.

6 Threats to Validity

Even with the careful planningf the study some factors should be considered in the
evaluation of the results validitye discuss the study validity with respect to its
conclusion, internal, external, andnstruct validity{51].

Concerning the conclusion validity, siné®264 data point were collectedthe
reliability of the measurement procesgght bean issue This issuewas alleviated
becaus¢he measuremestvereindependently checked by one of the authorshhdt
not collecied the respectivedata. Moreover, aralyss may have beemffected by
spurious evidence since, for instancegdularity metrics were indirectly used
answer RQ1In this particular caseve could only draw plausible conclusicgiace a
strongerdataanalysiscould not beercarriedout with such indirect measement

Concerning the internal validitymost analyzed versions of the SPLs were
constructedby the authas for the purpose ofthis study. Different design options
might have producedifferent results. WebStorevas inspired by a previous Java
application,named PetStorelf], developed based on indusstyength technology,
such asJava Server Pages (JSP) aaivlets Additionally, its successive releases
were discussed between the developers in omefully developedio employ the
most widely used of each implemastation techniqueAll CC releases oMobileMedia
were designedand implementedh previous studie$§24]. Therefore, in thicasewe
only adapted the available releases to conforthedP and FOP designs

Another issue with respect to intetnealidity is that he modularity metrics
depends on how accurate was the mapping (assignment) of each concern to code
elements. Fortunately, we observed in a previous st\tihat, apart from Concern
Diffusion over Lines of Code (CDLOC), the mapping@ess does not significantly
impact themodularity metricsusedin this paper. Additionally, in order to mitigate
this threat, we relied on concern mappings produced by the original developers.
Whether the concern mapping was fully correct or not, it jefiects howthese
metrics would be used in practice.

Concerning the external validitypse other factors limit the generalization of the
results

1 Although the SPLs were carefully designed to be as nymferal as
possible, it should be considered thatb8re and MobileMedia are special
purpose systems that may not represerpralpertiesof real world systems.
However, both PetStore (predecessoiMd#bStorg and MobileMediawere
used in research studies with similar purposes of diiy /).

I The evoldion scenariosmay also not represent the large space of
possibilities in realvorld SPL evolution scenariog:or instance, we have not
investigated some intricate situations involviiegture interactiothat may
appear in larger SPLs

1 Only the Java progmming language and the AHEAD environment were
considered in this study. Some of our resaltsild be different if other
languages and environmenstich as Caesardd), were used. For example,
different languages may support different types of constracis the
measuresould havesomevariation.

1 Only modularity and change propagation metriesre considered hefig to
point out the variability mechanisms benefltlowever,they provideonly a

limited view ofthesebenefits,as ey do noimeasure theeal effort required
to performSPL change. Similar limitation is observed in every study that
relies on metrics.

Finally, concerning the construct validitpne issue is on how mucsupport
change propagation andodularity metricsoffer to produce robusanswers toour
investigation As a matter of factthese proxy metriceffer a limited view on the
designstability and modularityproblens, i.e., they only permitis todraw indirect
conclusions abouSPL modularity andstability properties The modulariy metrics
aremostly related teeparatiorof concerngpropertieswhich areinsufficient toallow
acompleteanalysis otthe benefitof eachvariability mechanisnwith respect t&sPL
modularity. Changeropagationmeasures werased to complemerthe modilarity
analysis In fact, we have learnet this studythatthese two sets of metrics should
notbe analyzed in isolatioiHoweverthey have shown themselves torhereuseful
when analyzed in conjunction with the other used metrics.

7 Related Work

Seveanl studies have investigated variability management on $8L4, 11, 49].
Batory and othershave reported an increased flexibility in changes and significant
reduction in program complexity measured by number of methods, lines of code, and
number of tokas per clas§ll]. Simplificationin evolving SPL architecture hasso
been reported in3B, 44], as consequence of variability manageme@niherresearch
work hasalsoanalyzed stability and reuse of SHUS, 24]. For instanceFigueiredo

and his collegues[24] performed a empirical studyto assessnodularity, change
propagation, and feature dependentywo evolving SPIs. Their results suggest that
AOP copes well with the separation of features with no shared aodlaloes not
succeed whemandatoryfeaturesare the change focusTheir studyfocusedon
aspecworiented programmingdAOP) while, in this study,we analyzed variability
mechanismavailable infeatureoriented programmin(f-OP)

Apel and Batory §] have proposed the Aspectual Mixin Layér approach to
allow the integration between aspects &@P refinements. These authors have also
used size metrics to quantify the number of components and lines of cou&iia
implementationSimilar to ours, their study can be seen as a step towsdsroper
use of composition mechanisms availabldhiese language3.heir study, however,

() did not consider a significant suite of software metrsteh as change propagation
metrics,and(ii) did not address SPL evolutieeenariognd stability

Dantas and his colleagu¢&8] conducted a exploratory studyto analyzethe
support of new modularization techniques to implen®&Ls Their study aimed at
comparing the advantage and drawbacks of differeadvanced programming
techniques in terms @PL featurestability and reuseTheseauthors haveompared
essentially thredifferent AOP implementationsisingtwo evolving software product
lines iBatis and MobileMediaMoreover they conducted their study considering two
additional stability metrics Refactoring of Modules (RoMand Alterations in Code
Elements (ACE Their work suggests that CaesadB|[a hybrid AOP and FOP
approach provides better stability and reusdé SPL modules With respect to
modularity, their guantitative analysibased a the same suite 08§0C metrics
showed that compositional approaches enable further modular decomposition of the

SPL code. Our work also supports tfilsding and presents neanesfor the other
studied mechanismia the context ofSPL evolution as discased in Section 5.4.

Kaéstner and others [34] performed a study to compare other important properties to
be assessed when dealing with variability mechanisms for SPL.: feature traceability,
ease of adoption and safety. Their study compared compositional and annotative
approaches, showing that each one has strengths and weaknesses. Their study
supports the synergistic use of both approaches for best results in expressiveness,
granularity and type-safety. Other studies also analyzed granularity and type-safety of
variability mechanisms in the context of SPL [9, 33]. These studies complement our
analysis since they investigate different SPL quality properties.

Severalstudiesfocused on challenges irthe software evolutiorfield [28, 39, 41].
Theseworkshave incommon the concern about measuring different artifacts through
software evolution, which relies directly on the use of reliable software metocs.
instance,Greenwoodand otherqd29] useda similar suite of metrics to assess the
design stability of anwlving application.In general there is a shared senakout
software metricon the engineering perspective: thayefar from being maturend
are constantly the focus afisagreement$l, 32, 40]. Different from our study
Greenwood's ondid not targt at assessing the impact of changes in the core and
variable features of SPL&dditionally, they used a different application as a case
study, nhamed Health Watcher.

8 Concluding Remarks and Future Work

The use of variability mechanisms to develop SPLs largely depends on our ability to
empirically understand its positive and negative effects through design changes.
Generally speaking, the development of an SPL has to provide means to anticipate
changes. That is why incremental development has been largely adopted. This study
evolved SPLs in order to assess the capabilities of FOP mechanisms to provide SPL
modularity and stability in the presence of change requests. Such evaluation included
two complementary analyses: change propagation and feature modularity.

Our main contributions in this work were the development of an open benchmark
for the evaluation of evolving SPLs qualitative and quantitative data analysis
frameworkand an extensive data analysis of collected metisaosg thebenchmark
and the frarawork

Some interesting results emerged from our analysis. First, thede€gnof the
studied SPk tends to be more stablethan the other traditional widelysed
approaches. This advantage of FOPagticularlytrue when a change targets optional
featues Second, we observethat FOP class refinemengglhere more closely the
OpencClosed principle[42]. Furthermore, such mechanisms usually scale well for
dependencies that do not involve shared code

The resultof Sections 4 and Bdicate thatonditioral compilation (CC) mayot
beadequate when used in evolving SRthen feature modularity is a major concern
For instance,he addition of new featuresising CC mechanismaisually causeghe
increaseof featuretanglingand scatteringThese crosscuttinfpaturesdestabilizethe
SPLarchitecture andhake itdifficult to accommodat&iture changes.

The implementatios using design patterns and FOPRefinementsalso striveto
accommodate chang#sat require major restructuringhey usuallyrequirea higher

number ofcomponents insertiorduring this kind of SPL evolution whencompared
to CC. The reailts have shown that tre removalof some design pattermaakesthe
SPL architecture unstablehen optional features are turned into mandatdhys kind
of charmge negatively affectdhe SPLmodularitypropertiegespecially scattering).

This work has revealed evidences for developers and language designers that
although FOP is weluited for SPL implementation, it still has drawbacks that
require the combinationwith other mechanisms or the design of constructions to
handle finegrained, crosscutting and tysafe issuegespectively

For the future workthe study ofdifferent metrics andits relationship toother
quality attributes in SPLssuch as robustnesnd reusecould be interestingin
addition, other modularity properties, such as coupling and cohesion, could be
assessetb increase theomprehensiveness the results presented.

Also, aspects can be useslymbiotically with one of the studiedvariability
mechanism todevelop SPLs These hybrid approaches would permittasbetter
understandhow they behave in change scenarespecially because we have pointed
out the crosscutting features are issues that none of studied mechanisms could provide
succesful solution(Figure 11).

Finally, akey challengeon the developingf SPLsis to guarantee that only well
typed programs are generatétlis often hard if not impractical,to type check all
possible productsespecially whenthe number of feature conmations grows
exponentially with the number of featuresThe annotative and compositional
approachestudied in thispaper @ not supportmodular type checkingHowever,
there are solutions based on SAT solvers [19, 36, 50] andctygmking non
preprocesed code [9, 35, 37] proposed to héis problem Thus, futurestudies
shouldanalyze the ability of each approach to deal with this prolledincrease the
breadth of our study.

Acknowledgments

This work was partially supported by FAPEMIG, grant CEX-APQ-02932-10 and
CEX-APQ-2086-11 and CNPqg grant 475519/2012-4. This work was partially
supported by CAPES and CNPq scholarships. We would like to thank the reviewer’s
comments that helped to improve the quality of this work.

References

1. Abran, A., Sellami, A.Suryn, W. Metrology.: Measurement and Metrics in Software
Engineering. In Proceedings of the 9th International Software Metrics Symposium
(Metrics), pp. 2-11. (2003).

2. Adams, B., De Meuter, W., Tromp, H., Hassan, A. E.: Can we Refactor Conditional
Compilaion into Aspects? In 8th ACM International Conference on Aspeented
Software Development (AOSD), pp. 24354. ACM, Virginia, New York (2009)

3. Adler, C. Optional CompositionA Solution to the Optional Feature Problem? MSc
Dissertation, University dflagdeburg, Germany. (2011).

4. Ali Babar, M., Chen, L., Shull, F. Managing Variability in Software Product Lines,
IEEE Software,.27, pp. 8991. (2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Alves, V., Neto, A. C., Soares, S., Santos, G., Calheiros, F., Nepomuceno, V., Pires,
D., Leal, J., Borba.P.: From Conditional Compilation to Aspects: A Case Study in
Software Product Lines Migration. In First Workshop on Asji@gented Product

Line Engineering (AOPLE), Portland, USA. (2006)

AnastasopoulgsM.: Implementing Product Line Variabilities. In Reedings of the

2001 Symposium on Software Reusability, pp.-4a9.7. ACM (2001)

Apel, S. et al.. Aspectual Mixin Layers: Aspects and Features in Concert. In
Proceedings of the 28th International Conference on Software Engineering, pp. 122
131, Shanghai, ina. (2006)

Apel, S., Batory, D.. When to Use Features and Aspects? A Case Study. In
Proceedings of the 5th International Conference on Generative Programming and
Component Engineering, pp.-5688. Portland, Oregon (2006)

Apel, S., Kastner, C., GroR3lingeA. and Lengauer, C.: Type Safety for Feature
Oriented Product Lines. Automated Software Engineering2 pp-300. (2010)

Apel, S., Leich, T., Saake, G.: Aspectual feature modules. IEEE Transactions on
Software Engineering., Volume 34, pp.18380. (20@)

Batory, D., Johnson, C., MacDonald, B., Heeder, D. V.: Achieving Extensibility
through Produetines and DomawSpecific Languages: A Case Study, ACM
Transactions on Software Engéreng and Methodology, Volumgl, pp. 191-214.
(2002)

Batory, D., Sarvia, J., Rauschmayer.: Scaling Stéfise Refinement. IEEE
Transactions on Software Engineerikglume 30, Issue 6pp. 355-371 (2004)

Batory, D.: Feature models, Grammars, and Propositional Formulas, In Proceedings
of the 9th International Software PradilLine Conference (SPLC), pp--Z0. (2005)

Batory, D.: Featur®riented Programming and the AHEAD Tool Suite. In

Proceedings of the 26th International Conference

pp. 702-703. IEEE Computer Society, Washingt¢2004)

Cadelli, L., Wegner, P.: On understanding Types, Data Abstraction, and
Polymorphism. Computing Surveys, 17 (4): pp.4%22 (1985)

Castor Filho, F., Cacho, N., Figueiredo, E., Maranhao, R., Garcia, A., Rubira, C.:
Exceptions and Aspects: The Devil is iretDetails. In Proceedings of the 4th ACM
SIGSOFT Symposium on Foundations of Software Engineering (FSE), ppl@52
Portland, USA(2006).

Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison
Wesley, (2002)

Dantas, F., Gaia, A.. Software Reuse versus Stability: Evaluating Advanced
Programming Techniques. In: 23th Brazilian Symposium on Software Engineering,
SBES' 1 0-49,gglvador4Bahia, Brazil, (2010)

Delaware, B., Cook,W., Batory, D.: Fitting the Pieces Togethdvlachinechecked
Model of Safe Composition. In Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineerimpg. 243—252, ACM, New York, NY,

USA, (2009)

Eaddy, M., Aho, A, Mur phy, G. C.: “l'denti fying

Crosscutting Concerns I n Proceedings
Assessment of Contemporary Modularization Techniques, pp. 2, (2007)

Eaddy, M.: An Empirical Assessmeaf the Crosscutting Concern Problem. Ph.D.
Dissertation. Columbia University. (2008).

Ferreira, G., Gaia, F., Figueiredo, E., and Maia, M.: On the Use of F&atiergted
Programming for Evolving Software Product Lines: A Comparative Study. In

of

t

he

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Proceeding®f the 15th Brazilian Symposiuwn Programming Languages (SBLP),
pp.29--30. Sao PauloBrazil, (2011

Figueiredo, E. et al.. On the Maintainability of Asp@riented Software: A
ConcernOriented Measurement Framework. In Proceedings of European Corferenc
on Software. Maintenance and Reengineering, pp--182, Athens (2008)
Figueiredo, E. , Cacho, N. , Sant’ Anna,
Soares, S., Ferrari, F., Khan, S., Castor Filho, F., and Dantas, F.: Evolving Software
Product Lineswith Aspects: An Empirical Study on Design Stability. In: 30th
International Conference on Software Engineering, pp--280. ACM, New York
(2008)

Figueiredo, E., Garcia, A., Maia, M., Ferreira, G., Nunes, C., Whittle, J. On the
Impact of Crosscutting Caern Projection on Code Measurement. In Proceedings of
the Int'l Conference on Aspe€rriented Software Development (AOSD), (2011)
Figueiredo, E. , Sant’ Anna, Cc. , Garci a,
ConcernSensitive Design Heuristics. In: d@eedings of the 23rd Brazilian
Symposium on Software Engineering (SBES), pp-83 Fortaleza, Brazil (2009)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Objedbriented Software. Reading, MA: Addison Wesley BP9

Godfrey, M., German, D.: The Past, Present, and Future of Software Evolution, In
Frontiers of Software Maintenance, pp. #2388 (2008)

Greenwood, P. et al.. On the Impact of Aspectual Decompositions on Design
Stability: An Empirical Study. In Proceedjs of the 21st European conference on
ObjectOriented Programming (ECOOP), pp. £#800. Berlin (2007)

Grubb, P., Takang, A. A.: Software Maintenance: Concepts and Practice. World
Scientific Publishing Company, New Jersey (2003)

Hu, Y., Merlo, E., Dagenaj M. and Lague, B.: C/C++ Conditional Compilation
Analysis Using Symbolic Execution. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM), pp. 196, (2000)

Jones, C.: Software metrics: Good, Bad and Missing, Computer, Volamsse 9,

pp. 98-100 (1994)

Késtner, C., Apel, S. and Kuhlemann, M. Granularity in Software Product Lines. In
Proceedings of t he32@ Néwhvork, 8Y5 BSADALM (2008)p .
Kéastner, C., Apel, S., Integrating Compositional and Annotafipproaches for
Product Line Engineering. In: Proceedings of the GPCE Workshop on
Modularization, Composition and Generative Techniques for Product Line
Engineering (McGPLE). pp. 3510. (2008)

Kéastner, C., Apel, S., Thim, T., Saake, G.: Type checking Atinatbased Product
Lines. Transactions on Software Engineering and Methodology, Volume 21, Issue 3,
Article 14 (2012).

Késtner, C., Apel, S.: Typ€hecking Software Product LineA Formal Approach.

In Proceedings of the International Conference on Aateth Software Engineering
(ASE), pages 25&67. IEEE CS, (2008).

Kenner, A., Kastner, C., Haase, S., Leich, T... TypeChef: Toward Type Checking
#ifdef Variability in C. In Proceedings of the 2nd International Workshop on Feature
Oriented Software Developme ACM, New York, NY, USA, pp. 2532. (2010)

Lee, K., Kang, K. C., Koh, E., Chae, W., Bokyoung, K., Choi, B. W. Domain
oriented Engineering of Elevator Control Software: A Product Line Practice, in:
Proceedings of the First Conference on Software Produets: Experience and
Research Directionpp. 3-22. Kluwer Academic Publisher§2000

C.

A.

311

Mont ei

and

Lu

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

Maletic, J., Kagdi, H. Expressiveness and Effectiveness of Program Comprehension:
Thoughts on Future Research Directions, In Frontiers of Software Maintenance, pp.
31-- 37. (2008).

Mayer, T., Hall, T.: A Critical Analysis of Current OO Design Metrics, Software
Quality Control, Volume 8, pp. 97+110,(1999) .

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfield, R., Jazayeri, M.

Challenges in Software Evolotin , in: | WPSE’' 05 : Proceedi

International Workshop on Principles of Software Evolution, IEEE Computer
Society,pp. 13-22, (2005)

Meyer, B.: ObjeciOriented Software Construction, 1st ed. Prertedl, Englewood

Cliffs (1988)

Mezini, M., Ostermann, K. Conquering Aspects with Caesar. In 2nd International
Conference on Aspe@riented Software Development (AOSD), Boston, USA,
(2003)

Pettersson, U., Jarzabek, S. Industrial Experience with Building a Web Portal Product
Line Using a LightweightReactive Approach. In Proceedings of the 10th European
Software Engineering Conference, pp.-3286. ACM, (2005)

Prehofer, C. Featureriented Programming: A Fresh Look at Objects. ECOOP 1997:
pp. 419443. (1997)

Ribeiro, M., Borba, P.: Improving Guidamcwhen Restructuring Variabilities in
Software Product Lines. In Proceedings of the 13th European Conference on
Software Maintenance and Reengineering (CSMR), pp-889 Kaiserslautern,
(2009)

Sant’ Anna, C. et al.: On tOnentedSefuware Ama n d
Assessment Framework. In Brazilian Symposium on Software Engineering (SBES),
pp. 19-34 (2003)

Svahnberg, M., Bosch. J.: Evolution in Software Product Lines: Two cases. Journal
of Software Maintenance, Volume 11, Issue 6, pp-32PR, New York, NY, USA.
(1999)

Svahnberg, M., Gurp, J.v., Bosch, J.: A Taxonomy of Variability Realization
Techniques, SoftwaréPractice and Experience, Volume 35, Issue 8, pp:-758.
(2005)

Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe CompositibRroduct lines. In
Proceedings of the 6th International Conference on Generative Programming and
Component Engineering, GPCE, ACM, New York, NY, USA, pp-B2®4 (2007)

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.:
Experimenation in Software Engineering. Springer. (2012)

Yau, S. S. and Collofello, J. S.: Design Stability Measures for Software Maintenance.
IEEE Transactions on Software Engineering, Volume 11, Issue 9, §8889(1985)
Young, T.: Using AspectJ to Build a $efire Product Line for Mobile Devices. MSc
Dissertation, University of British Columbia, (2005)

Ma i

ngs of

nt enanc

